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PREFACE

A  fundamental  component  of  mathematical  analysis,  the  calculus  of  variations  provides  a

sophisticated  and  elegant  framework  for  comprehending  and  resolving  a  wide  range  of

optimization  issues.  This  study  has  developed  into  a  rich  field  with  strong  ties  to  physics,

engineering, economics, and other fields since its inception in the 18th century, thanks to the

ground breaking contributions of Euler, Lagrange, and others.

This  book  aims  to  provide  a  comprehensive  and  accessible  introduction  to  the  calculus  of

variations,  catering to  students,  researchers,  and practitioners  alike.  It  is  designed to  offer  a

balance between theoretical foundations, practical applications, and computational techniques,

thereby equipping readers with the necessary tools to tackle both classical problems and modern

challenges in optimization theory.
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UNIT - 1

Introduction to Calculus.of Variations.

Learning objectives

 Understanding the Variational Problem
 Identify the key features of Euler-Lagrange Equation
 Recognize Extremals and Critical Points

Structure

1.1 Definition of calculus.of variations.

1.2 Historical background

1.3 Basic concepts and terminology

1.4 Summary

1.5 Keywords

1.6 Self Assessment questions

1.7 Case Study

1.8 References
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1.1. Definition of Calculus.of Variations.
Calculus of variations is a branch of mathematics concerned with finding the optimal solution to

certain problems involving functions. Instead of optimizing functions of several variables, as in

traditional calculus, calculus of variations deals with optimizing functionals, which are functions

of functions. The fundamental problem is to find the function that minimizes or maximizes a

given functional. This field has applications in physics, engineering, economics, and many other

areas.

1.2. Historical Background:
The origins of calculus of variations can be traced back to the 17th century, with contributions

from mathematicians like Pierre de Fermat and John Bernoulli. However, it was the work of

Leonhard Euler in the 18th century that laid the foundation for the modern development of the

subject. Euler's pioneering contributions include the Euler-Lagrange equation, which provides

necessary conditions for the existence of extrema of functionals. Subsequent developments by

Lagrange,  Jacobi,  and  Weierstrass  further  advanced  the  theory,  leading  to  its  widespread

application in various fields of science and engineering.

1.3. Basic Concepts and Terminology:
1.3.1  Functional:   In  calculus  of  variations,  a  functional  is  a  mapping  from a  set  of

functions to the real numbers. It assigns a real number to each function in the set.

1.3.2  Extremal or Stationary Function:  An extremal function is a function for which the

value  of  the  functional  is  an  extremum  (maximum  or  minimum).  A  stationary

function is a function that makes the functional stationary, meaning its variation is

zero.

1.3.3 Euler-Lagrange Equation: The Euler-Lagrange equation is a necessary condition for a

function  to  be  an  extremal  of  a  given  functional.  It  is  derived  by  considering

variations of the functional and setting the first variation equal to zero.

1.3.4 Variational Problem:  A variational problem involves finding an extremal function

that optimizes a given functional, subject to certain constraints.
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1.3.5  Boundary  Conditions:  In  many  variational  problems,  boundary  conditions  are

imposed to specify the behavior of the extremal function at the boundaries of the

domain.

1.3.6 Constraints: Variational problems may also involve constraints, which restrict the set

of allowable functions under consideration.

1.3.6 Function Space:  The set of functions over which a functional is defined is often

referred  to  as  a  function  space.  Different  function  spaces  may  have  different

properties, affecting the solutions to variational problems.

Understanding these basic concepts and terminology is crucial for delving deeper into the theory

and  applications  of  calculus  of  variations.  Throughout  this  study,  we  will  explore  various

techniques for solving variational problems and apply them to practical problems in different

fields.

1.4 Summary
Overall, a course on calculus of variations provides students with the theoretical knowledge and

practical abilities needed to address variational issues in a variety of academic fields. It also

paves  the  way  for  future  research  and  applications  in  applied  sciences  and  advanced

mathematics.

1.5 Keywords

1. Keywords for an Introduction to Calculus of Variations:

2. Variational Problems

3. Functionals

4. Extremals

5. Euler-Lagrange Equation

6. Critical Points

1.6 Self Assessment questions
1 Define what a functional is and provide an example.
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2 Explain the concept of an extremal in the context of calculus of variations.

3 State and derive the Euler-Lagrange equation for a given variational problem.

4 Solve a simple variational problem using the Euler-Lagrange equation.

5 How do you handle constraints in variational problems? Provide an example.

1.7 Case Study
The Brachistochrone Problem

In the 17th century, Johann Bernoulli proposed a famous problem known as the Brachistochrone

problem, which translates from Greek as "shortest time." The problem seeks to find the curve

along which a particle will slide under gravity between two points in the shortest time possible,

assuming no friction.

1 Describe the Brachistochrone problem in your own words.

2 Why is the Brachistochrone problem significant in the history of mathematics?

1.8 References
1. Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.

2. Brunt, B. v. (2004). The Calculus of Variations. Germany: Springer New York.
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UNIT - 2

Functionals and Variation

Learning objectives

 Understanding Functionals

 Basic Properties of Functionals

 Function Spaces

 Variational Calculus

Structure

2.1 Definition of functionals

2.2 Variational calculus

2.3 Properties of functionals

2.4 Summary

2.5 Keywords

2.6 Self Assessment questions

2.7 Case Study

2.8 References
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2.1. Definition of Functionals:
A functional is a mathematical mapping from a vector space to a scalar. Formally, let X be a

vector space and Y be the scalar field. Then, a functional F is defined as a mapping:

F: X→ Y .

For  example,  consider  the  functional  F[f]which  maps  a  function  f(x)  to  its  integral  over  a

specified domain:

F[f]=∫abf(x)dx

2.2. Variational Calculus:
Variational calculus deals with problems of finding functions that optimize certain functionals. A

fundamental problem in variational calculus is the calculus of variations, which involves finding

the function that minimizes or maximizes a certain functional.

Consider the following variational problem:

J[y]=∫abF(x,y,y′)dx

where(𝑥) is the function to be determined, and y’ denotes its derivative with respect to x . The 

goal is to find the function (𝑥) that minimizes or maximizes the functional J[y].

2.3. Properties of Functionals:
Functionals are mathematical objects that assign a scalar value to a function or a set of functions.

They are commonly used in various branches of mathematics, physics, and engineering. Here are

some key properties of functionals:

1. Linearity: A functional 𝐹 is linear if it satisfies the following properties:

 Additivity: (𝑓+𝑔)=𝐹(𝑓)+𝐹(𝑔) for any functions 𝑓 and 𝑔.

 Homogeneity: (𝛼𝑓)=𝛼𝐹(𝑓) for any function 𝑓 and scalar 𝛼.

2. Continuity:  A functional is continuous if  small  changes in the function result  in

small changes in the value of the functional. Formally, a functional 𝐹 is continuous

if  for  any  sequence  of  functions  (𝑛) converging  to  a  function  𝑓,

lim 𝑛→∞𝐹(𝑓(𝑛))=𝐹(𝑓).
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3. Differentiability: A functional is said to be differentiable if it has a derivative with

respect  to  the  function(s)  it  depends  on.  This  concept  is  crucial  in  variational

calculus, where functionals are minimized or maximized.

4. Convexity: A functional 𝐹 is convex if it satisfies the inequality 

for any functions 𝑓 and 𝑔, and 𝜆 in the interval [0,1].

5. Lower  semi  continuity:  A  functional  𝐹 is  lower  semicontinuous  if,  roughly

speaking,  its  level  sets  (sets  of  points  where  𝐹 takes  values  below  a  certain

threshold) are closed.

6. Compactness: A functional 𝐹 is compact if every sequence of functions 𝑓(𝑛) that

satisfies certain criteria (e.g., boundedness) contains a subsequence that converges to

a function 𝑓, and 𝐹(𝑓(𝑛)) converges to 𝐹(𝑓).

7. Weak and Strong Convergence: Functionals often define notions of convergence

for  sequences  of  functions.  Weak  convergence  usually  refers  to  convergence  of

functionals under integration against a test function, while strong convergence refers

to convergence in a normed space.

8. Symmetry  and  Invariance:  Some  functionals  exhibit  symmetry  or  invariance

properties under certain transformations of the function(s) they operate on.

These  properties  form  the  basis  for  analyzing  and  understanding  functionals  in  various

mathematical frameworks, such as functional analysis, calculus of variations, and optimization

theory. There are several important properties of functionals, some of which are analogous to

properties of functions.

Theorem 2.3.1: Linearity of Functionals
A functional F is linear if, for any functions f and g and scalars a and b, it satisfies:
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Theorem 2.3.2: Continuity of Functionals
A functional F is continuous if, for any sequence of functions converging to a function  f, 

F[fn]converges to𝐹[𝑓] .

2.4 Summary
A basic area of mathematical analysis is functionals and variation, specifically in the context of

functional analysis and the calculus of variations. This field's primary focus is on functions of

functions, or the functionals that translate functions into real numbers. Gaining an understanding

of functionals and variation requires mastering a number of important ideas and methods.

2.5 Keywords
1. Functionals

2. Calculus of Variations

3. Euler-Lagrange Equation

4. Extremum

5. Variational Calculus

2.6 Self Assessment questions
1. What is a functional, and how does it differ from a typical function? 

2. Explain the concept of the calculus of variations. What are its main objectives? 

3. What is the Euler-Lagrange equation, and what role does it play in the calculus of 

variations? 4. Describe the necessary conditions for a functional to have an extremum. 

4. How are function spaces relevant to the study of functionals and variation? 

2.7 Case Study
It is the responsibility of a structural engineering company to design a bridge's support beam.

The objective is to employ the least amount of material possible while yet making sure the beam

satisfies  rigidity  and  strength  specifications.  The  company  uses  methods  from  optimization

theory and the calculus of variations to achieve this. 
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1. Create  a  bridge  support  beam that  satisfies  strength and stiffness  requirements  while

using the least amount of material possible. 

2. Reframe the issue as a limited optimization of the functional, aiming to reduce material
consumption within the specified bounds. 

2.8 References
1. Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.

2. Brunt, B. v. (2004). The Calculus of Variations. Germany: Springer New York.
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UNIT - 3

Variation of a Functional and Its Properties

Learning objectives

 Students  should  comprehend  the  concept  of  functional  and  how  they  differ  from

functions

 Students should learn how to compute the variation of a functional

Structure

3.1 Calculating variations

3.2 Properties of variation

3.3 Examples of variational problems

3.4 Summary

3.5 Keywords

3.6 Self Assessment questions

3.7 Case Study

3.8 References

3.1 Calculating Variations
In this chapter, we delve into the fundamental concepts surrounding the variation of a functional,

exploring its calculation methods, properties, and providing illustrative examples of variational

problems.

Variation of a functional involves understanding how the functional changes as its arguments

vary. Given a functional [𝑦], where  𝑦 is a function, the variation of  𝐽 with respect to  𝑦 is

denoted as 𝛿𝐽. 
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Mathematically, it's defined as:𝛿𝐽[𝑦]=𝐽[𝑦+𝜖𝜂]−𝐽[𝑦]

where 𝜂 is an arbitrary function and 𝜖 is a small parameter. This expression essentially captures 

the change in the functional as the function 𝑦 is perturbed by 𝜖 𝜂. 

3.2 Properties of Variation
1. Linearity:  The  variation  operator  is  linear,  meaning it  satisfies  the  properties  of

additivity and homogeneity.  This property simplifies  many calculations involving

variations.

2. Integration  by  Parts:  Often,  integration  by  parts  is  employed  to  manipulate

variations, enabling the transformation of terms involving derivatives into terms that

are easier to handle.

3. Boundary Conditions: Variations need to satisfy appropriate boundary conditions.

Typically, variations vanish at the endpoints of the domain.

4. Stationary Points:  Critical points of a functional correspond to stationary points,

where variations vanish. These points are essential in solving variational problems.

Variation is a fundamental concept in various fields, from biology to statistics to

economics.  It  refers to  the differences or  diversity  observed within a  population,

dataset, or system. Here are some key properties of variation:

a) Magnitude: Variation can vary in degree. It can be large or small, depending on

the range of values within a dataset or population.

b) Causes: Variation  can  arise  from various  sources,  including genetic  diversity,

environmental factors,  random chance,  or combinations thereof.  Understanding

the causes of variation is crucial for analyzing and interpreting data.

c) Types: There  are  different  types  of  variation,  including  genetic  variation,

environmental variation, and variation due to random processes. Each type may

require different analytical approaches for study.
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d) Measures: Variation can be quantified using statistical measures such as variance,

standard  deviation,  range,  or  coefficient  of  variation.  These  measures  help  to

quantify the spread or dispersion of data points within a dataset.

e) Significance: Understanding the significance of variation is  essential.  In some

cases, variation may be noise or random fluctuations within a system, while in

others, it may signal important underlying patterns or differences.

f) Impact: Variation  can  have  significant  implications  in  various  contexts.  For

example, in biology, variation is the basis for natural selection and evolution. In

economics, variation in market prices can affect consumer behavior and business

strategies.

g) Management: In some cases, variation needs to be managed or controlled. For

instance,  in  manufacturing  processes,  reducing  variation  can  improve  product

quality and consistency. In healthcare, managing genetic variation is crucial for

personalized medicine approaches.

h) Spatial  and  Temporal  Patterns: Variation  can  exhibit  spatial  and  temporal

patterns.  Spatial  variation  refers  to  differences  observed  across  geographical

locations,  while temporal variation refers to changes over time. Understanding

these patterns can provide insights into underlying mechanisms and processes.

i) Modeling: Variation  is  often  accounted  for  in  mathematical  and  statistical

models.  Models  that  incorporate  variation  can  better  represent  real-world

phenomena and make more accurate predictions.

j) Evolution: Variation is the raw material for evolution. It provides the diversity

upon which natural selection acts, driving adaptation and the emergence of new

species over time.
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Understanding the properties of variation is essential for researchers and practitioners across

various  disciplines,  as  it  underpins  many aspects  of  data  analysis,  decision-making,  and

scientific inquiry.

3.3 Examples of Variational Problems
1. Brachistochrone Problem:

Shortest paths
First, we apply this finding to establish the shortest path between two places, which is a

straight line. A path of the type x → (x, y(x)) from A to B may be found by using the

following formula: given two points A = (0, 0) and B = (a, b) with a > 0.

To obtain this functional's Euler-Lagrange equation, we denote

Then

and

Consequently, we get the equation

Stated differently, there is a constant C ∈ R such that 

for every x. (Remember that we really have −1 < C < 1.) When this equation is solved 

for y’2, it follows that
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for every x. Consequently, y 0 must be constant. y(0) = 0 from the boundary conditions 

Because y(a) = b, we can now quickly determine that 

2. Geodesic Problem:

Lagrangian Approach

The Lagrangian's Definition

 The Euler-Lagrange Equations provide the geodesic equations

  where γ = 0, 1, 2, and 3. 

   The Lagrangian for this issue is provided b

allowing γ to equal t, φ, and r. 

For every γ = t, φ, r, which correspond to the time, angle, and radial equations, 

respectively, we shall write down the Euler-Lagrange equations. From the form of the 

geodesic equations 

3. Calculus  of  Variations:  This  is  a  field  of  mathematical  analysis  that  deals  with

functionals, which are functions of functions. The simplest example is the problem of

finding the function that minimizes or maximizes an integral.
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4. Fermat's Principle of Least Time: In optics, Fermat's principle states that light travels

between two points along the path that requires the least time, assuming that the medium

is uniform. This principle can be used to derive the laws of reflection and refraction.

5. Minimization  of  Energy:  In  physics  and  engineering,  many  problems  involve

determining  a  system's  design  to  reduce  its  energy   examples  include  finding  the

equilibrium shape of a stretched membrane, the shape of a soap film spanning a wire

frame, or the path of a particle subject to conservative forces.

6. Optimal Control Theory: In engineering and economics, optimal control theory deals

with determining the control inputs to maintain system dynamics while minimizing a cost

function described by differential equations. This is used in designing control systems for

various applications, such as robotics, aerospace, and finance.

Figure 3.3.1: Optimal Control Theory

7. Shape Optimization: In engineering design, variational methods are used to optimize the

shape of structures or devices to achieve certain performance criteria while minimizing 

material usage or maximizing efficiency. 
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3.4 Summary
Understanding the variation of functionals and its properties is foundational in many areas of

mathematics  and  physics.  Through  this  chapter,  we've  explored  the  fundamental  principles

underlying the calculation of variations, discussed key properties, and highlighted examples of

variational  problems  encountered  across  various  disciplines.  These  concepts  serve  as  the

cornerstone for further exploration into the rich field of calculus of variations.

3.5 Keywords
1. Functional

 2. Calculus of Variations

 3. Euler-Lagrange Equation 

4. Extremum 

5. Variational Calculus 

3.6 Self Assessment questions
1. What is a functional, and how does it differ from a typical function?

 2. Explain the concept of the calculus of variations. What are its main objectives?

 3. What is the Euler-Lagrange equation, and what role does it play in the calculus of variations? 

4. Describe the necessary conditions for a functional to have an extremum. 

5. How are function spaces relevant to the study of functionals and variation? 

6. Give examples of different types of function spaces and their properties. 

       

3.7 Case Study
The job of optimizing a major commercial building's heating system's energy use falls to a 

facilities management business. The objective is to use as little energy as possible while keeping 

the interior of the building at a comfortable temperature. 

1. Create the best control plan for the heating system to reduce energy use and satisfy the 

building's various temperature needs. 
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2. Define a functional that shows how much energy the heating system uses overall over a 

given amount of time. 

3.8 References
1. Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.

2. Brunt, B. v. (2004). The Calculus of Variations. Germany: Springer New York.
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UNIT - 4

Variational Problems with Fixed Boundaries

Learning Objectives:

 Understand the difference between variational problems with fixed boundaries and 

those with free boundaries.

 Define the appropriate function spaces over which the extremal functions are sought.

 Discuss the role of fixed boundary conditions in specifying the behavior of extremal 

functions.

Structure:

4.1 Introduction to problems with fixed boundaries

4.2 Boundary value problems

4.3 Examples and applications

4.4 Summary

4.5 Keywords

4.6 Self-Assessment Questions

4.7 Case Study

4.8 References
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4.1 Introduction to Problems with Fixed Boundaries
Variational  problems  with  fixed  boundaries  involve  finding  a  function  that  minimizes  or

maximizes a certain functional, subject to given boundary conditions. The function sought after

typically represents some physical quantity or system parameter, and the boundary conditions

define the constraints imposed on the function. The solution to such problems provides insights

into the behavior of the system under consideration and aids in optimizing its performance.

4.2 Boundary Value Problems
Boundary  value  problems  (BVPs)  are  a  specific  class  of  variational  problems  with  fixed

boundaries, where the sought-after function must satisfy prescribed conditions at the boundaries

of the domain. These conditions may include specified values of the function, its derivatives, or

combinations thereof. Solving boundary value problems often involves techniques from calculus

of variations, differential equations, and numerical methods.

Example: 4.2.1  Heat Conduction in a Rod

Consider a one-dimensional heat conduction problem in a rod of length 𝐿, where the

temperature distribution (𝑥) is governed by the heat equation:

∂u
∂ t

=k ∂
2u
∂x2

subject to boundary conditions 𝑢(0,𝑡)=𝑢(𝐿,𝑡)=0for all 𝑡, representing fixed temperatures at the 

ends of the rod. The objective is to find the temperature distribution (𝑥) within the rod over time.

4.3 Examples and Applications
Variational  problems with fixed boundaries find applications across diverse fields,  including

physics, engineering, economics, and biology. Here are some examples:

Example 4.3.1: Brachistochrone Problem
The brachistochrone problem seeks the curve along which a particle will slide under gravity from

one  point  to  another  in  the  shortest  time.  This  classical  problem  can  be  formulated  as  a

variational problem with fixed boundaries and solved using the principle of least action.
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Example 4.3.2: Structural Optimization
In structural engineering, variational methods are used to optimize the design of beams, plates,

and  other  structural  components  to  minimize  weight  while  ensuring  strength  and  stiffness.

Boundary value problems arise in determining the optimal shape and material distribution of

these structures.

Example 4.3.3: Quantum Mechanics
In  quantum  mechanics,  variational  methods  are  employed  to  approximate  the  ground  state

energy of quantum systems. By formulating the problem as a variational problem with fixed

boundaries and choosing an appropriate trial wave function, thus we can obtain an approximate

solution to the Schrödinger equation.

4.4 Summary
In summary, variational problems with fixed boundaries are fundamental in variational calculus 

and have broad applications across diverse fields. Understanding the mathematical formulation, 

solution techniques, and interpretation of results is essential for effectively addressing such 

problems in practice.

4.5 Keywords
1. Variational Problems

2. Fixed Boundaries

3. Boundary Conditions

4. Euler-Lagrange Equation

5. Extremal Functions

4.6 Self-Assessment Questions
1. What is a variational problem with fixed boundaries?

2. How do you define a functional for a variational problem with fixed boundaries?

3. What are the boundary conditions in a fixed boundary variational problem?
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4. What is the Euler-Lagrange equation used for in variational problems with fixed 

boundaries?

5. How do you derive the Euler-Lagrange equation for a functional with fixed boundary

conditions?

6. Give an example of a physical system that can be modeled using a variational 

problem with fixed boundaries.

7. Why is it important for trial functions to satisfy the boundary conditions in 

variational problems?

8. What role does the calculus of variations play in solving fixed boundary problems?

9. How can the Rayleigh-Ritz method be applied to a variational problem with fixed 

boundaries?

10. What is the significance of finding extremals in variational problems with fixed 

boundaries?

4.7 Case Study
Variational  problems  with  fixed  boundaries  involve  finding  a  function  that  minimizes  or

maximizes  a  given  functional  subject  to  specific  boundary  conditions.  These  problems  are

common  in  physics,  engineering,  and  applied  mathematics,  where  they  are  used  to  model

phenomena  such  as  the  shape  of  a  hanging  cable,  the  path  of  light  in  a  medium,  or  the

configuration of a mechanical system in equilibrium.

Objective: To demonstrate the application of variational principles to solve a boundary value 

problem by minimizing a functional, specifically focusing on a problem with fixed boundaries

4.8 References
1. Elsgolc, L. E. (2007). Calculus of Variations. Dover Publications.

2. Weinstock, R. (1974). Calculus of Variations: With Applications to Physics and 

Engineering. Dover Publications.
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UNIT - 5

Euler’s Equation and Extremals

Learning Objectives:

 Explain how Euler’s equation arises from the principle of stationary action.

 Understand the mathematical notation and terminology associated with Euler’s 

equation.

 Identify variational problems where Euler’s equation can be applied, such as finding 

the path of least time or minimal surface area.

Structure:

5.1 Derivation of Euler's equation

5.2 Existence and uniqueness of extremals

5.3 Applications of Euler's equation

5.4 Summary

5.5 Keywords

5.6 Self-Assessment Questions

5.7 Case Study

5.8 References
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5.1 Derivation of Euler's Equation:
Euler's equation, also called as the Euler-Lagrange equation, use to find path or function that

minimizes or maximizes a certain functional.

Consider a functional [𝑦] defined as: 

          
where y is a function of x, y’ denotes the derivative of y with respect to x, and F (x, y, y’) is 
some function of x, y, and y'. The aim is to find the function (x) that minimizes or maximizes [y].
Euler's equation states that the externals of [y] satisfy: 

             
5.2 Existence and Uniqueness of Extremals:

 Existence: Under certain regularity conditions on the functional [y] and the boundary

conditions, extremals (minimizers or maximizers) exist.

 Uniqueness:  Extremals might not always be unique. In some cases, there can be

multiple functions that extremize the functional.

5.3 Applications of Euler's Equation:
 Physics: Euler's equation is extensively utilized in physics, particularly least action 

principle in classical mechanics, where it describes the path a particle will take 

between two points in space and time.

 Optimization: Euler's equation has applications in optimization problems where one

seeks to minimize or maximize a certain functional.

 Engineering: In engineering, Euler's equation is applied in various fields such as 

structural optimization, where it helps in finding the shape of structures that 

minimize the total potential energy.

 Economics: In economics, Euler's equation can be used to derive optimal 

consumption and investment decisions over time, especially in dynamic optimization

problems.

These applications highlight the broad utility and significance of Euler's equation across various 

disciplines.

5.4 Summary
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Euler's equation and extremals are fundamental concepts in the calculus of variations, providing 

powerful tools for finding optimal solutions to variational problems. By solving Euler's equation,

one can identify extremals that minimize or maximize functionals, leading to insights into the 

behavior of dynamic systems and the optimization of various quantities.

5.5 Keywords
1.    Euler's Equation

2.    Calculus of Variations

3.    Variational Calculus

4.    Extremal

5.    Extremum

5.6 Self-Assessment Questions
1. What is Euler's equation in the calculus of variations?

2. How does Euler's equation relate to finding extremals of functionals?

3. What is meant by an extremal in the context of the calculus of variations?

4. Explain the significance of extremals in variational problems.

5. How does Euler's equation help in determining extremals?

6. What is the role of boundary conditions in finding extremals?

7. Describe the conditions under which Euler's equation is applicable.

8. Can Euler's equation be used to find extremals for functionals dependent on several

unknown functions?

9. How does Euler's equation generalize to higher dimensions?

10. Give  an  example  of  a  physical  problem  where  extremals  play  a  crucial  role  in

optimization.

5.7 Case Study
Designing a cable suspension bridge involves optimizing the shape of the cable to minimize

the  total  potential  energy  while  satisfying  various  constraints,  such  as  maximum  cable

tension and minimum deflection. Euler's equation and the concept of extremals play a crucial

role in determining the optimal shape of the cable.

24



Objective:  To  demonstrate  the  application  of  Euler's  equation  and  extremals  in  optimizing

the design of a cable suspension bridge.

5.8 References
1. Arnol'd, V. I. (1989). Mathematical Methods of Classical Mechanics. Springer.

2. Gelfand, I. M., &Fomin, S. V. (2000). Calculus of Variations. Dover Publications.
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UNIT - 6

Functionals Dependent on Several Unknown Functions

Learning Objectives:

 Define functionals dependent on several unknown functions and distinguish them 

from functionals dependent on a single function.

 Understand the mathematical formulation of functionals dependent on several 

unknown functions.

 Extend the concepts of variational calculus to functionals dependent on several 

unknown functions.

Structure:

6.1 Multi-variable functionals

6.2 First order derivatives in functionals

6.3 Examples and solutions

6.4 Summary

6.5 Keywords

6.6 Self-Assessment Questions

6.7 Case Study

6.8 References
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6.1 Multi-variable Functionals
Functionals that depend on several unknown functions introduce complexity compared to their

single-variable counterparts. Here, the unknown functions are typically denoted as (𝑥), (𝑥), (𝑥),

etc., where each function may have its own domain and range. 

The functional 𝐽 can be expressed as:

Where (x(x),z(x),w(x) is the integrand, and J represent the functional

6.2 First Order Derivatives in Functionals
 To compute the first-order derivative of a functional, 

For a Functional

The Euler-Lagrange equation is given by:

                                      

where y’ = ∂ y∂ x

 Solving this equation yields the differential equation governing the extremals (or critical points) 

 of the functional.

6.3 Examples and Solutions
 Example 6.3.1: Finding Extremals

Consider the functional [y]= ∫( y '2− y2)dx subject to the boundary conditions y(0) = 0 and y(1) 

= 1. Using the Euler-Lagrange equation, we find:
d
dx (2y')-2y=0.

Solving this second-order ordinary differential equation with the given boundary conditions 

yields the extremal (x)=sin(πx).
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Example 6.3.2: Optimal Control Problems
In optimal control problems, we aim to optimize functionals subject to constraints. For instance,

consider  the  functional  [𝑦]=∫𝑇(𝑦2+𝑢2) 𝑑𝑡,  subject  to  the  constraint  𝑦’=𝑢,  where  𝑢 is  the

control function. Employing techniques such as the Pontryagin's Maximum Principle, we can

find  optimal  control  strategies  that  minimize  or  maximize  the  functional  under  the  given

constraints.

6.4 Summary
Understanding functionals dependent on several unknown functions is crucial in several fields

such  as  physics,  engineering,  and  economics.  By  mastering  the  concepts  of  multi-variable

functionals  and  first-order  derivatives  within  functionals,  one  can  tackle  a  wide  array  of

problems  involving  optimization  and  control,  contributing  to  advancements  in  science  and

technology.

6.5 Keywords
1.     Variational Calculus

2.     Functional Analysis

3.     Calculus of Variations

4.     Multiple Functions

5.     Optimization Theory

6.6 Self-Assessment Questions
1. What are functionals dependent on several unknown functions?

2. How do functionals dependent on several unknown functions differ from functionals 

dependent on a single function?

3. What mathematical notation is used to represent functionals dependent on several 

unknown functions?

4. Explain the concept of variational problems involving functionals dependent on 

several unknown functions.
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5. What role do partial derivatives play in finding extremal functions for functionals 

dependent on several unknown functions?

6. How does the Euler-Lagrange equation generalize to functionals dependent on 

several unknown functions?

7. Describe a scenario where functionals dependent on several unknown functions arise 

in physics or engineering.

8. What computational techniques can be used to solve variational problems involving 

functionals dependent on several unknown functions?

9. Discuss the importance of boundary conditions in variational problems with 

functionals dependent on several unknown functions.

10. How can functionals dependent on several unknown functions be applied in 

optimization problems?

6.7 Case Study
In structural mechanics, the behavior of complex systems, such as beams and plates, is often

described by partial differential equations (PDEs) involving several unknown functions. Solving

these  PDEs requires  formulating and minimizing functionals  that  depend on these  unknown

functions, typically through variational principles.

Objective:To demonstrate the application of functionals dependent on several unknown 

functions in structural mechanics, particularly in the analysis of a two-dimensional elastic plate 

subjected to external loading.

6.8 References
1. Sagan, H. (1989). Introduction to the Calculus of Variations: The Theory of Lagrange

Multipliers. Courier Corporation.

2. Dacorogna, B. (2014). Direct Methods in the Calculus of Variations. Springer Science &

Business Media.
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UNIT - 7

Functionals Dependent on Higher Order Derivatives

Learning Objectives

 Exploring Calculus of Variations

 State the Euler-Lagrange equation and understand its significance.

 Investigate applications in quantum mechanics and quantum field theory.

Structure

7.1Introduction to Higher Order Derivatives

7.2Functionals with Higher Derivatives

7.3Variational Problems with Higher Derivatives

7.4 Summary

7.5 Keywords

7.6 Self Assessment

7.7 Case Study

7.8 References
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7.1 Introduction to Higher Order Derivatives
Higher order derivatives extend the concept of differentiation beyond the first and second 

derivatives. For a function (𝑥), the nth order derivative, denoted as (𝑛)(𝑥), represents the rate of 

change of the (n−1)th order derivative. Mathematically, it is defined as the limit of the nth divided 

difference as the interval approaches zero

f (n ) ( x )=lim
h→0

f (n−1)(x+h)−f (n−1)(x )h f (n)(x )

These higher order derivatives find applications in various fields including physics, engineering, 

and optimization.

Let’s start this section with the following function.

f ( x )=5 x3−3 x2+10x−5

By this point we should be able to differentiate this function without any problems. Doing this

we get,

f ' (x) = 15x2-6x + 10

Now, this is a function and so it can be differentiated. Here is the notation that we'll use for that,

as well as the derivative.

f ' ' (x) = (f'(x))' = 30x - 6

This is called the second derivative and f'(x) is now called the first derivative.

Again, this is a function, so we can differentiate it again. This will be called the third derivative.

Here is that derivative as well as the notation for the third derivative.

ƒ"'(x) = ((ƒ"x))' = 30

Continuing, we can differentiate again. This is called, oddly enough, the fourth derivative. We're

also going to be changing notation at this point. We can keep adding on primes, but that will get

cumbersome after a while.

ƒ'''' (x) = ((ƒ'''(x))' = 0

This process can continue but notice that we will get zero for all derivatives after this point. This

set of derivatives leads us to the following fact about the differentiation of polynomials.

Example 7.1.1: Find the first and second derivates for each of the following:
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Theorem (Weierstrass Theorem)
Let S⊆R and f : S⟶ Rbe a well defined function. Then will have a maximum/minimum under 

the following sufficient conditions.

Note that the above conditions are just sufficient conditions but not necessary

Example 7.1.2:

Solution:

At x = 0, f(x) is obviously not continuous. On the other hand, the maximum and minimum points

of the f(x) are at x = −1, x = 1, and x0 = 0. The function still has a maximum and minimum even 

though the Weierstrass theorem's continuity condition is broken.

Example 7.1.3 

Let f=[−1,1 ]→R defined by f ( x )=x2
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The Weierstrass theorem's two requirements are met by this function. f(x) has a maximum value 

of 1 at x = −1 and x = 1, and a minimum value of 0 at x = 0.

Example 7.1.4

Let f=R→R defined by f ( x )=x3

7.2 Functionals with Higher Derivatives
Functionals that depend on higher order derivatives arise in many areas of mathematics and

physics,  particularly  in  the  study  of  variational  problems  and  differential  equations.  These

functionals typically involve integrals over functions and their derivatives, where the integrands

may contain terms with derivatives of order higher than two.

Functionals with higher derivatives often appear in the calculus of variations, where one seeks to

optimize functionals that depend on higher-order derivatives of a function. These functionals can

represent  various  physical  quantities  or  describe  the  behavior  of  systems.  Here  are  some

examples:

1. Elasticity  Functionals:  In  continuum  mechanics,  functionals  involving  higher

derivatives of displacement fields are used to describe the energy of elastic materials

subject  to  deformations.  For  example,  the  strain  energy  density  functional  may
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depend on the second derivatives of the displacement field, representing the bending

or stretching of materials.

2. Euler-Bernoulli Functional: This functional appears in the study of the bending of

beams. It involves the second derivative of the displacement function with respect to

the  spatial  variable,  representing  the  curvature  of  the  beam.  The Euler-Bernoulli

beam equation arises from minimizing this functional.

3. Ginzburg-Landau Functional: In the theory of superconductivity and superfluidity,

the  Ginzburg-Landau  functional  involves  the  second  derivative  of  the  order

parameter  (a  complex-valued  function)  with  respect  to  the  spatial  variable.  This

functional  describes  the  energy  of  the  system  and  is  minimized  to  find  the

equilibrium state.

4. Action Functional in Classical Mechanics: In Hamiltonian mechanics, the action

functional involves the higher derivatives of the generalized coordinates with respect

to time. The action is an integral over time of the Lagrangian, which depends on

these higher derivatives. The principle of least action states that the true trajectory of

a system minimizes this action.

5. Higher-Order  Derivative  Regularization:  In  image  processing  and  machine

learning,  functionals  involving  higher  derivatives  are  used  for  regularization

purposes. For example, total variation regularization penalizes the total variation of

the gradient of an image, leading to denoising or edge-preserving effects.

6. Functional for Thin Film Deposition: In materials science, functionals involving

higher derivatives may describe the energy of thin films during deposition processes.

These functionals account  for phenomena such as surface tension,  curvature,  and

diffusion, which affect the morphology of thin films.

These examples illustrate how functionals with higher derivatives appear in various scientific

and engineering contexts, capturing the behavior of systems at different length scales or under

different physical conditions. They often arise when considering phenomena involving curvature,

elasticity, or dynamic behavior.
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7.3 Variational Problems with Higher Derivatives
Variational  problems  involving  higher  derivatives  are  encountered  in  diverse  fields  such  as

mechanics, optics, quantum physics, and control theory. These problems aim to find functions

that extremize certain functionals, which may involve higher order derivatives.

Solving  variational  problems with  higher  derivatives  often  requires  the  use  of  sophisticated

mathematical tools, such as the calculus of variations, functional analysis, and partial differential

equations.  Techniques  such as  Euler-Lagrange  equations,  which  generalize  to  handle  higher

derivatives, play a central role in the analysis of these problems.

Applications of variational problems with higher derivatives abound in engineering and science,

where they are used to model and optimize systems with complex dynamics and constraints. By

understanding the behavior of functions and functionals dependent on higher order derivatives,

researchers can gain deeper insights into the underlying phenomena and develop more efficient

solutions to practical problems.

7.4 Summary

 According  to  the  definition  given,  functionals  are  mappings  from  a  space  of

functions to real numbers. To every function in the space, they give a value.

 Taking several derivatives of a function is known as taking higher-order derivatives.

They document the acceleration, higher-order characteristics, and rate of change of

functions. 

 The calculus of variations is a vital subject that relies heavily on functionals that are

reliant on higher-order derivatives. Optimizing functionals is the focus of this area of

mathematics, which frequently involves derivatives up to a given order. 

 The calculus of variations relies heavily on the Euler-Lagrange equation, which is an

essential tool. The function's derivatives with respect to the independent variable and

potentially  higher-order  derivatives  are  involved,  and  it  offers  the  necessary

conditions for the functional extrema. 

 Uses in Physics: Field theory, quantum mechanics, and classical mechanics all use

functionals that depend on higher-order derivatives. They explain the behavior of

35



systems  whose  derivatives  as  well  as  the  function  itself  determine  the  system's

dynamics. 

7.5 Keywords
1. Higher Order Derivatives

2. Weierstrass theorem

3. Variational Problems

7.6 Self-Assessment

1.   What is a functional? 
2.   Define higher-order derivatives. 
3.   What role do functionals dependent on higher-order derivatives play in the calculus of 
       variations? 
4.   Explain the Euler-Lagrange equation and its significance in the context of functionals. 
5.   In what fields of physics are functionals dependent on higher-order derivatives 
      commonly used? 
6.   How are numerical methods applied to solve problems involving functionals dependent 
      on higher-order derivatives? 
7.   Can you provide a physical interpretation of functionals dependent on higher-order 
     derivatives? 
8.   What are some advanced topics related to functionals dependent on higher-order 
      derivatives? 

7.7 Case Study
Polio drops are delivered to 50K children in a district. The rate at which polio drops are given is
directly proportional to the number of children who have not been administered the drops. By the
end of 21'd week half the children have been given the polio drops. How many will have been
given the drops by the end of 3' week can be estimated using the solution to the differential

equation dydx
=¿k(50 — y) where x denotes the number of weeks and y the number of children

who have been given the drops. 

1.State the order of the above given differential equation. 

2.Which method of solving a differential equation can be used to solve dydx
=¿k(50 — y) ?

a. Variable separable method 
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b. Solving Homogeneous differential equation 

c. Solving Linear differential equation 

d. all of the above 

3. The solution of the differential equation dydx
=¿k(50 — y) is given by

7.8 References 
1. Gelfand, I. M., Fomin, S. V. (2012). Calculus of Variations. United States: Dover 

Publications.

2. Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.
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UNIT - 8

Functionals Dependent on Functions of More than One Independent Variable

Learning Objectives:

 Explain  the  role  of  functionals  in  calculus  of  variations  and  mathematical

optimization

 Understand the mathematical notation and formalism used to represent functionals

dependent on functions.

 Apply  the  Euler-Lagrange  equation  to  find  extremal  functions  that  minimize  or

maximize the functionals.

Structure:

8.1 Functionals with multiple independent variables

8.2 Examples and applications

8.3 Summary

8.4 Keywords

8.5 Self-Assessment Questions

8.6 Case Study

8.7 References
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8.1 Functionals with Multiple Independent Variables:
In previous chapters, we explored functionals, which are mappings from a space of functions to

the real numbers.  These functionals depended on functions of a single independent variable.

However, many real-world problems involve functions of more than one independent variable. In

this chapter, we delve into functionals that are dependent on functions of multiple independent

variables.

Consider a functional J[xl, x2, ..., xn)), where y(xl, x2, ..., xn) is a function of nn,, independent 
variables x1, xn. The functional Jj maps a space of such functions to the real numbers. 

The functional  𝐽 might represent various physical quantities such as energy, action, or other

quantities of interest in mathematical physics. For example, in classical mechanics, the action

functional depends on the trajectory of a particle in three-dimensional space, which is described

by three independent variables.

8.2 Examples and Applications:
1. Classical  Mechanics: As  mentioned  earlier,  the  action  functional  in  classical

mechanics  is  a  quintessential  example.  The  action  functional  depends  on  the

trajectory of a particle in space, described by functions of three independent variables

(typically 𝑥).

2. Field Theory: Field theories deal with fields that depend on multiple independent

variables.  For  instance,  in  classical  electrodynamics,  the  electromagnetic  field  is

described by functions of both space and time coordinates.

3. Optimization Problems: Functionals with multiple independent variables frequently

arise  in  optimization  problems  involving  multiple  parameters.  For  instance,  in

engineering design, one might seek to optimize a function of several variables to

maximize efficiency or minimize cost.

4. Image Processing: In image processing and computer vision, functionals are used to

represent various properties of images,  such as smoothness,  edge preservation, or

noise reduction. These functionals typically depend on functions defined over two-

dimensional spatial domains.
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5. Economic Modeling: In economic modeling, functionals with multiple independent

variables  are  used  to  represent  utility  functions,  production  functions,  or  cost

functions, which depend on various economic parameters.

6. Machine Learning: In machine learning, particularly in the field of deep learning,

functionals are used to define loss functions or objective functions that measure the

discrepancy between predicted and actual outputs. These functionals often depend on

functions of multiple input variables.

7. Control Theory: Functionals with multiple independent variables find applications

in control theory, where one aims to design control strategies to steer a dynamical

system  towards  a  desired  state.  The  performance  of  control  systems  is  often

quantified using functionals of system trajectories.

Functionals with higher derivatives often appear in the calculus of variations, where one seeks to

optimize functionals that depend on higher-order derivatives of a function. These functionals can

represent  various  physical  quantities  or  describe  the  behavior  of  systems.  Here  are  some

examples:

1. Elasticity  Functionals:  In  continuum  mechanics,  functionals  involving  higher

derivatives of displacement fields are used to describe the energy of elastic materials

subject  to  deformations.  For  example,  the  strain  energy  density  functional  may

depend on the second derivatives of the displacement field, representing the bending

or stretching of materials.

2. Euler-Bernoulli Functional: This functional appears in the study of the bending of

beams. It involves 2ndderivative ofdisplacement function with respect to the spatial

variable, representing the curvature of the beam. The Euler-Bernoulli beam equation

arises from minimizing this functional.

3. Ginzburg-Landau Functional: In the theory of superconductivity and superfluidity,

the  Ginzburg-Landau  functional  involves  the  second  derivative  of  the  order

parameter  (a  complex-valued  function)  with  respect  to  the  spatial  variable.  This

functional  describes  the  energy  of  the  system  and  is  minimized  to  find  the

equilibrium state.
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4. Action Functional in Classical Mechanics: In Hamiltonian mechanics, the action

functional  involves  the  higher  order  derivatives  of  generalized  coordinates.   The

action is an integral over time of the Lagrangian, which depends on these higher

derivatives. The principle of least action states that the true trajectory of a system

minimizes this action.

5. Higher- Order  Derivative
Regularization:  In image processing and machine learning, functionals involving

higher derivatives are used for regularization purposes. For example, total variation

regularization penalizes the total variation of the gradient of an image, leading to

denoising or edge-preserving effects.

6. Functional for Thin Film Deposition: In materials science, functionals involving

higher derivatives may describe the energy of thin films during deposition processes.

These functionals account  for phenomena such as surface tension,  curvature,  and

diffusion, which affect the morphology of thin films.

These examples illustrate how functionals with higher derivatives appear in various scientific

and engineering contexts, capturing the behavior of systems at different length scales or under

different physical conditions. They often arise when considering phenomena involving curvature,

elasticity, or dynamic behavior.

Functionals with multiple independent variables are common in various branches of mathematics

and physics, particularly in fields like calculus of variations, optimal control theory, and partial

differential equations. Here are some examples:

1. Functionals of Several Variables in Calculus of Variations: 

In the calculus of variations, functionals that depend on functions of multiple variables

are prevalent. 

2. Hamilton's Principle in Classical Mechanics: 

Hamilton's principle states that the true path of a system is such that the action functional,

which depends on the system's coordinates and their derivatives with respect to time, is

stationary.  Mathematically,  this  involves  minimizing  or  maximizing  an  integral
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functional of the form [𝑞]=∫𝑡1𝑡2𝐿(𝑞,𝑞’,𝑡) 𝑑𝑡 where  L is the Lagrangian, a function of

the generalized coordinates q, their time derivatives q’, and time t.

3. Functional Equations in Quantum Mechanics: 

In quantum mechanics, functionals of multiple variables arise in variational methods used

to approximate the ground state energy of quantum systems. The variational principle

involves minimizing the expectation value of the Hamiltonian functional, which depends

on the trial wave function and its derivatives.

4. Control Functionals in Optimal Control Theory: 

Optimal control problems involve finding the control inputs that minimize or maximize a
certain objective functional, subject to constraints described by differential equations

5. Energy Functionals in Field Theory: 

In field theory, such as in the study of fluid dynamics or electromagnetism, functionals

depending  on  multiple  field  variables  (e.g.,  velocity,  pressure,  electric  and  magnetic

fields) and their derivatives are common. These functionals describe the energy or action

of the field configurations.

6. Regularization Functionals in Image Processing: 

In image processing and computer vision, functionals of multiple variables are used for

regularization purposes, such as denoising or inpainting. Total variation regularization,

for instance, involves minimizing a functional that depends on the image values at each

pixel and their spatial gradients.

These examples demonstrate the broad applicability of functionals with multiple independent

variables in various mathematical and physical contexts, where they are used to model complex

systems, derive governing equations, and solve optimization problems.

8.3 Summary
In  summary, functionals dependent on functions of more than one independent variable find

widespread  applications  across  various  fields,  ranging  from  physics  and  engineering  to

economics and machine learning. 
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8.4 Keywords
1. Optimization Theory

2. Euler-Lagrange Equation

3. Extremal Functions

4. Functional Analysis

5. Variational Problems

8.5 Self-Assessment Questions
1. What is a functional dependent on functions?

2. How do functionals dependent on functions differ from regular functions?

3. What is the Euler-Lagrange equation used for in the context of functionals dependent

on functions?

4. Give  an  example  of  a  variational  problem involving  a  functional  dependent  on

functions.

5. Explain the concept of extremal functions in the context of functionals dependent on

functions.

6. How are functionals dependent on functions used in optimization theory?

7. What role do functionals dependent on functions play in the calculus of variations?

8. Discuss the significance of variational principles in problems involving functionals

dependent on functions.

9. What  are  some  common  applications  of  functionals  dependent  on  functions  in

physics and engineering?

10. How are numerical methods used to solve problems involving functionals dependent

on functions?

8.6 Case Study
The study of functionals dependent on functions of more than one independent variable is central

to understanding phenomena in physics and engineering, such as the behavior of surfaces and

interfaces. One classic problem is finding the shape of a soap film spanning a given boundary,

which corresponds to minimizing the surface area.
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Objective:  To  illustrate  the  application  of  functionals  dependent  on  functions  of  two

independent variables, we aim to find the shape of a soap film spanning a fixed contour. This

problem can be modeled by minimizing the surface area functional.

8.7 References
1. Ambrosetti, A., & Prodi, G. (1993). A Primer of Nonlinear Analysis (Vol. 34).

2. Cambridge  University  Press.Strang,  G.  (1986).  Introduction  to  Applied

Mathematics.Wellesley-Cambridge Press.
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UNIT - 9

Variational Problems in Parametric Form

Learning Objectives

 Analyze critically how different physical and engineering problems might be solved 

using variational techniques.

 Recognize the relationship between the extremals of functionals and physical 

configurations or trajectories.

 Describe how to determine the functionals' extremals.

Structure

9.1 Variational Problems in Parametric Form

9.2 Applications and solutions

9.3 Solutions Techniques for Parametric Variational Problems

9.4 Summary

9.5 Keywords

9.6 Self Assessment

9.7 Case Study

9.8 References
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9.1 Variational Problems in Parametric Form
Variational problems often arise in various fields of science and engineering, where one seeks to

optimize a certain quantity, typically a functional, over a space of functions. In many cases, it is

beneficial to represent the functions involved in the problem using parameters. This parametric

representation offers flexibility and often simplifies the problem-solving process. In this chapter,

we explore the parametric representation of variational problems and delve into its applications

and solutions.

The variable end point problem is handled in this part in a straightforward manner, as follows:

Determine the curve for which the functional equation between any two vertical lines, x = a and

x = b, is

         
possess an extremum. We calculate the functional (1) variation, which is the increment's linear

component.

as a result of h increasing in y. The Taylor expansion results in instantaneously 

At x = a and x = b, the function h(x) no longer vanishes, in contrast to the fixed end point 

problem. Currently, integration by components produces

                     
First, take into account every function h(x) for which h(a) = h(b) = 0. If δJ = 0, then it follows 

that

This implies that y, the end point problem's solution, must also be an Euler's equation solution. 

Assume that y is a fix. Therefore, δJ = 0 must vanish, causing the integral in (2) to
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Since h is arbitrary, it follows from the above equation that

                                            
In summary, we obtain a general solution to Euler's equation (2) and apply the criteria (3) to find

the constants in the general solution in order to solve the variable end point problem.

Example 9.1.1: A particle travels down a vertical plane curve, starting at the origin. Determine

the curve the particle must follow in order to get at the vertical line x = b, where b ≠ 0, as quickly

as possible. Given that the entire energy is conserved, the velocity of motion, v, = √ 2gy, where g

is the gravitational acceleration. Additionally, it is established along the curve as

from which we immediately have

The above gives us the transit time as a functional

The integrand F=√1+ y2
√2gy

does not depend on x. So this is Case 2 where Euler’s equation can be 

reduced to

                                            
several steps from Euler’s equation (4) lead to
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9.1.1  Parametric Representation of Variational Problems
In  the  context  of  variational  problems,  a  parametric  representation  involves  expressing  the

functions involved in the problem in terms of parameters. This representation transforms the

problem from one of finding an extremum of a functional to finding an extremum of a scalar

function with respect to these parameters.

9.1.2. Parametric Functions
 Definition and characteristics of parametric functions.

 Advantages and limitations of parametric representation.

9.1.3. Constraints and Parameterization
 Incorporating constraints into the parametric representation.

 Strategies for choosing appropriate parameterizations.

9.2. Applications of Parametric Representation
Parametric representation finds applications in various fields, including physics, engineering, and

optimization.  In  this  section,  we  explore  some  common  applications  and  illustrate  how

parametric representation can simplify problem-solving.

9.2.1. Mechanics
 Parametric representation of trajectories in classical mechanics.

 Solving problems involving trajectory optimization using parametric methods.

9.2.2. Control Theory
 Parameterization of control policies in optimal control problems.

 Utilizing parametric representation for system identification and controller design.

9.2.3. Material Science and Engineering
 Parametric representation of material properties in optimization problems.

 Optimization of material structures and compositions using parametric methods.
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9.3. Solutions Techniques for Parametric Variational Problems
Solving  variational  problems  with  parametric  representation  often  requires  specialized

techniques tailored to the problem at hand. In this section, we discuss various solution methods

and their applicability.

9.3.1. Analytical Methods
 Derivation of analytical solutions for simple parametric variational problems.

 Limitations and challenges in finding closed-form solutions.

9.3.2. Numerical Methods
 Introduction to numerical optimization techniques for parametric variational problems.

 Implementation of gradient-based and gradient-free optimization algorithms.

9.3.3. Hybrid Approaches
 Integration of analytical and numerical techniques for efficient solution strategies.

 Case studies demonstrating the effectiveness of hybrid methods.

Parametric representation in variational problems involves representing the solution of a problem

as  a  function  of  some  parameters.  This  approach  is  particularly  useful  when  dealing  with

optimization  problems  where  the  solution  depends  on  multiple  variables,  and  finding  an

analytical solution is difficult. Here's a breakdown:

Parametric Representation:
1. Parameterization:  Instead  of  directly  solving  for  the  function  or  curve  that

optimizes the objective, you introduce parameters that define the shape or behavior

of the function.

2. Constraints:  The problem may have constraints  that  need to  be satisfied by the

parameterized  solution.  These  constraints  can  also  be  expressed  in  terms  of

parameters.

3. Objective  Function:  The  objective  function,  which  you  aim  to  optimize,  is

expressed in terms of the parameters.
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Applications:
1. Optimal Control Problems: In control theory, parametric representations are commonly

used to find optimal control strategies for dynamical systems subject to constraints.

2. Shape Optimization: In engineering and design, parametric representations are used to

optimize shapes of structures or components to minimize weight, maximize strength, or

achieve other performance goals.

3. Inverse  Problems:  In  fields  like  medical  imaging  or  geophysics,  inverse  problems

involve  reconstructing  parameters  of  interest  from  observed  data.  Parametric

representations help in finding the optimal parameters that fit the observed data.

4. Machine Learning: In machine learning, optimizing the parameters of a model to fit a 

dataset is a variational problem. Parametric representations are used extensively in this

context, such as in neural networks where the weights and biases are the parameters.

In summary, parametric representation in variational problems offers a flexible framework for

solving complex optimization problems across various domains, with applications ranging from

engineering design to machine learning and beyond.

9.4 Summary 

 The Calculus of Variations is primarily concerned with functionals that rely on higher-

order derivatives. 

 Function optimization is the focus of this discipline, and derivatives up to a given order

are  frequently  involved.  As  it  provides  the  required  conditions  for  the  extrema  of

functionals, the Euler-Lagrange equation is an important tool in this regard.

 Advanced topics in this area include functional analysis, applications in fluid dynamics,

elasticity,  and  other  fields  where  complex  behaviors  are  modeled  using  functionals

dependent on higher-order derivatives.

9.5  Keywords
1. Parametric Form

2. Objective Function
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3. Mechanics

9.6 Self Assessment
1. What is a functional  and How is a functional different from a function?

2. Explain the meaning of higher-order derivatives. 

3. What role do functionals dependent on higher-order derivatives play in the calculus of 

variations? 

4. Describe the Euler-Lagrange equation and how functionals reliant on higher-order 

derivatives might benefit from it. 

5. Which branches of physics typically use functionals that depend on higher-order 

derivatives?

9.7 Case Study
Let f(x) be a real valeued function,then its 

Left Hand Derivates : 

Right Hand Derivates : 

Also a function f(x) is said to be differentiable at x=a if its L.H.D. and R.H.D at x=a exist are 

equal.

a. Find R.H.D of f(x) at x=1

b. Find L.H.D of f(x) at x=1 

9.8  References
1. Gelfand, I. M., Fomin, S. V. (2012). Calculus of Variations. United States: Dover 

Publications.

2. Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.
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UNIT - 10

Direct Methods for Variational Problems

Learning Objectives

 Analyze critically how different physical and engineering problems might be solved 

using variational techniques.

 Recognize the relationship between the extremals of functionals and physical 

configurations or trajectories.

 Describe how to determine the functionals' extremals.

Structure

10.1 Direct methods for  variational problems

10.2 Examples of variational problems

10.3 Algorithms for Direct Methods

10.4 Summary

10.5 Keywords

10.6 Self Assessment

10.7 Case Study

10.8 References
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10.1 Direct Methods for Variational Problems
Direct methods for solving variational problems are numerical techniques that directly compute

approximate solutions to optimization problems without transforming them into a sequence of

easier problems. These methods are particularly useful when dealing with complex optimization

problems  where  indirect  approaches,  such  as  gradient-based  methods,  are  impractical  or

inefficient.

Direct methods aim to find the solution to a variational problem by directly approximating the

optimal solution within a given feasible set. Unlike indirect methods, which rely on iterative

procedures to update guesses towards the solution, direct methods typically involve discretizing

the problem domain and then solving a finite-dimensional optimization problem.

10.2. Examples of Variational Problems:
a. Boundary Value Problems:

 Direct methods are commonly used to solve boundary value problems, where the goal is 

to find a function that satisfies certain conditions at its boundary.

 Example: Finite element methods discretize the domain into finite elements and solve for 

the unknown function within each element.

b. Optimal Control Problems:

 Optimal control problems involve finding the control inputs that optimize a given 

performance criterion subject to system dynamics and constraints.

 Direct methods discretize the control inputs and state variables over a finite time horizon 

and solve the resulting finite-dimensional optimization problem.

10.3. Algorithms for Direct Methods:
a. Finite Element Method (FEM):

 FEM discretizes the domain into a finite number of elements and approximates the 

solution within each element using piecewise polynomial basis functions.

 It then formulates a system of algebraic equations by enforcing the variational problem 

over the discretized domain and solves it to obtain the solution.
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b. Discontinuous Galerkin Method (DGM):
 DGM is similar to FEM but allows for discontinuities in the solution across element 

boundaries.

 It achieves higher-order accuracy and is particularly suitable for problems with shocks or 

discontinuities.

c. Finite Volume Method (FVM):
 FVM discretizes the domain into a finite number of control volumes and solves for the 

average value of the solution within each volume.

 It is commonly used for solving problems involving conservation laws.

Direct methods for solving variational problems involve finding the extremum of a functional

directly, without transforming the problem into an equivalent system of differential equations.

Here are some examples and algorithms commonly used for direct methods:

1. Finite Difference Method (FDM):
 Algorithm: Discretize the domain of the functional and approximate the derivative

with finite differences. Then, solve the resulting discrete optimization problem using

techniques like gradient descent, Newton's method, or conjugate gradient method.

 Example:  Consider  finding  the  minimum  of  a  functional  J(𝑢)=∫𝑎𝑏(𝑢′2−𝑢2)𝑑𝑥
subject to certain boundary conditions. Discretize the interval [a, b] into N points and

approximate the derivative  𝑢′ using finite differences. Then, minimize the discrete

functional using an optimization algorithm.

2. Finite Element Method (FEM):
 Algorithm:  Approximate  the  solution  using  piecewise  polynomial  functions

defined over a finite element mesh. Then, solve the resulting finite-dimensional

optimization problem using numerical optimization techniques.

 Example:  In structural mechanics,  the goal might be to find the displacement

field in a solid subject to certain loads and boundary conditions. The displacement

field  can  be  approximated  using  piecewise  linear  or  higher-order  polynomial

functions over a mesh of finite elements. The optimization problem is then solved

by  minimizing  the  potential  energy  functional  using  techniques  like  gradient

descent or Newton's method.
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These are just a few examples of direct methods for solving variational problems. Depending on 

the specific problem and requirements, different methods may be more suitable.

10.4 Summary

 Many applications  of  variational  problems can be found in  physics,  engineering,

mathematics, and other disciplines. 

 Field theory, quantum mechanics, optimization, and classical mechanics all make 

extensive use of variational approaches, which entail expressing problems in terms of

functionals and utilizing strategies like the Euler-Lagrange equation.

10.5 Keywords
1. Direct Optimization Method

2. Ritz Method

3. Variational Problems

4. Direct Methods

10.6 Self Assessment
1. What are the primary differences between variational methods and standard optimization 

approaches? 

2. What connection exists between the calculus of variations and variational problems? 

3. What is the role of variational approaches in quantum mechanics? 

4. In variational calculus, what function do functionals serve?  In a nutshell, how would one

use the calculus of variations to solve a variational problem? 

10.7 Case Study
1. Can resource allocation, pricing schemes, or portfolio management be optimized using 

variational methods in economic modeling while taking a variety of limitations and 

uncertainties into account?

2. How may variational methods in geography and cartography be used to discover the 

shortest path taking into account topography and elevation between two places on a 

curved surface like the surface of the Earth?
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10.8 References
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UNIT - 11

Rayleigh-Ritz Method

Learning Objectives:

 Explain  the  basic  concepts  of  variational  methods  and  how  they  are  used  to

approximate solutions to differential equations.

 Understand the formulation of a functional that represents the energy of a system.

 Identify appropriate boundary value problems where the Rayleigh-Ritz method can

be applied.

Structure:

11.1 Introduction to Rayleigh-Ritz method

11.2 Approximate solutions of variational problems

11.3 Applications and limitations

11.4 Summary

11. 5 Keywords

11.6 Self-Assessment Questions

11.7 Case Study

11.8 References
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11.1 Introduction to Rayleigh-Ritz Method:
The Rayleigh-Ritz method is a powerful technique used in the field of applied mathematics and

engineering to approximate solutions to variational problems. Variational problems often involve

finding the minimum (or maximum) value of a functional over a set of functions. The Rayleigh-

Ritz method provides a systematic approach to finding approximate solutions to these problems

by representing the solution space with a finite-dimensional subspace and then minimizing (or

maximizing) the functional over this subspace.

The Rayleigh-Ritz method is a powerful technique used in numerical analysis and engineering to

approximate solutions to eigen value problems and partial differential equations. Here are some

of its key properties:

1. Approximation Technique:  The  Rayleigh-Ritz  method  provides  an  approximate

solution to eigen value problems by representing the solution space with a finite set

of basis functions or trial functions. These functions are chosen to span the space in

which the true solution lies.

2. Variational  Principle:  The  method  is  based  on  the  variational  principle,  which

states that for any linear operator and its associated eigen value problem, the eigen

value  can  be  expressed  as  the  minimum  of  a  certain  functional,  known  as  the

Rayleigh quotient.

3. Minimization of Rayleigh Quotient: The Rayleigh quotient is minimized over the

trial solution space to obtain an approximation to the smallest eigen value of the

problem. This minimization process leads to problems on generalized eigen value

which can be solved numerically.

4. Convergence: The accuracy of the Rayleigh-Ritz method depends on the choice of

basis functions and the number of terms used in the expansion. As the number of

basis functions increases, the approximation typically converges to the true solution,

provided certain conditions are met.

5. Flexibility:  One of the strengths of the Rayleigh-Ritz method is  its  flexibility in

choosing the trial functions.  Depending on the problem at hand, various types of

basis  functions  such  as  polynomials,  trigonometric  functions,  or  splines  can  be

employed.
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6. Applications: The method is widely used in structural mechanics, electromagnetics,

quantum mechanics, and other fields of engineering and physics to solve eigen value

problems arising from differential equations governing physical systems.

7. Efficiency:  Rayleigh-Ritz  method is  often  computationally  efficient  compared to

other methods for solving eigen value problems, especially for large-scale problems

where direct methods might become impractical.

8. Limitations: While the Rayleigh-Ritz method is powerful, it does have limitations.

The accuracy of the approximation depends heavily on the choice of trial functions

and the number of terms used. Also, it may not be suitable for problems with highly

oscillatory solutions or problems with discontinuities.

11.2 Approximate Solutions of Variational Problems:

Consider a variational problem defined by a functional [𝑢], where 𝑢u is a function belonging to

some function space 𝑈. The goal is to find 𝑢u that minimizes (or maximizes) [𝑢] over 𝑈. The

Rayleigh-Ritz  method  involves  choosing  a  finite-dimensional  subspace  𝑉 of  𝑈,  typically

spanned by a set of basis functions. These basis functions are chosen such that they capture the

essential characteristics of the solution.

Let  𝜙1,2,...,𝜙𝑛 be the basis functions spanning  𝑉. We then seek an approximate solution of the

form:

                                                    (𝑥) = 𝑐1𝜙1(𝑥)+𝑐2𝜙2(𝑥)+...+𝑐𝑛𝜙𝑛(𝑥)

where  𝑐1,2,...,𝑐𝑛 are  coefficients  to  be  determined.  By  substituting  this  expression  into  the

functional [𝑢] and minimizing (or maximizing) with respect to the coefficients 𝑐𝑖, we obtain a

set of algebraic equations known as the Rayleigh-Ritz equations. Solving these equations yields

the approximate solution (𝑥) within the subspace 𝑉.

11.3 Applications and Limitations:
The Rayleigh-Ritz method finds applications in various fields, including structural mechanics,

fluid  dynamics,  quantum  mechanics,  and  electromagnetics.  It  provides  a  computationally
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efficient  way  to  approximate  solutions  to  complex  variational  problems  where  analytical

solutions are difficult or impossible to obtain.

However, the accuracy of the Rayleigh-Ritz method heavily depended on the choice of basis

functions  and  the  dimensionality  of  the  subspace  𝑉.  In  many  cases,  increasing  the

dimensionality  of  𝑉 leads  to  a  more  accurate  approximation,  but  this  also  increases  the

computational cost.  Additionally,  the method may struggle with functions that exhibit  strong

variations or singularities, requiring careful consideration in the choice of basis functions and

mesh refinement strategies.

11.4 Summary
In  summary,  while  the  Rayleigh-Ritz  method  offers  a  versatile  approach  for  approximating

solutions to variational problems, its effectiveness relies on a balance between computational

efficiency and accuracy, as well as careful consideration of the problem's specific characteristics

and limitations.

11.5 Keywords
1. Euler-Lagrange Equations

2. Boundary Value Problems

3. Approximate Solutions

4. Orthogonality

5. Completeness

6. Energy Minimization

11.6 Self-Assessment Questions
1. What is the primary objective of the Rayleigh-Ritz method?

2. How does the Rayleigh-Ritz method utilize trial functions?

3. What is a functional in the context of the Rayleigh-Ritz method?

4. Why is the choice of trial functions important in the Rayleigh-Ritz method?

5. What type of problems is the Rayleigh-Ritz method typically used to solve?

6. Explain the significance of the variational principle in the Rayleigh-Ritz method.

7. How are the Euler-Lagrange equations related to the Rayleigh-Ritz method?
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8. How does the Rayleigh-Ritz method handle boundary conditions?

9. What is meant by the convergence of the Rayleigh-Ritz method?

11.7 Case Study
The study of functionals dependent on functions of more than one independent variable is central

to understanding phenomena in physics and engineering, such as the behavior of surfaces and

interfaces. One classic problem is finding the shape of a soap film spanning a given boundary,

which corresponds to minimizing the surface area.

Objective:  To  illustrate  the  application  of  functionals  dependent  on  functions  of  two

independent variables, we aim to find the shape of a soap film spanning a fixed contour. This

problem can be modeled by minimizing the surface area functional

11.8 References
1. Reddy, J. N. (2006). An Introduction to the Finite Element Method (3rd ed.). McGraw-

Hill.

2. Meirovitch, L. (2001). Principles and Techniques of Vibrations. Prentice Hall.
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UNIT - 12

Introduction to Special Functions

Learning Objectives

 Analyze critically how different physical and engineering problems might be solved

using variational techniques.

 Recognize  the  relationship  between  the  extremals  of  functionals  and  physical

configurations or trajectories.

 Describe how to determine the functionals' extremals.

Structure

12.1 Introduction to special functions

12.2 Importance in mathematical physics

12.3 Historical development

12.4 Summary

12.5 Keywords

12.6 Self Assessment

12.7 Case Study

12.8 References
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12.1 Introduction to Special Functions

Special  functions  are  a  class  of  mathematical  functions  that  have  particular  properties,

representations,  or  applications  which  distinguish  them  from  more  general  functions  like

polynomials  or  trigonometric  functions.  They  often  arise  naturally  in  solving  differential

equations,  studying physical  phenomena, and in various areas of mathematical physics.  This

chapter provides an overview of special functions, explores their importance in mathematical

physics, and delves into their historical development.

Special functions encompass a wide variety of mathematical constructs, each with its unique

properties and applications. Some of the most common special functions include:

1. Gamma  Function  (Γ(x)): generalization  of  the factorial function to

nonintegral values,  introduced  by  the  Swiss  mathematician Leonhard  Euler in  the

18th century. For a positive whole number n, the factorial (written as n!) is defined

by n! = 1 × 2 × 3 ×⋯× (n − 1) × n. For example, 5! = 1 × 2 × 3 × 4 × 5 = 120. But

this formula is meaningless if n is not an integer.

Figure :12.1 Gamma Function

2. Beta Function (B(p, q)): Integrals important in probability theory and statistics.

The definition of the gamma function is as follows:

Furthermore, the factorial formula can be utilized to compute the beta function:
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3. Bessel Function (Jn(x)): It is crucial in describing wave phenomena

Table 8.1: Different Bessel Functions

4. Legendre  Functions  (P_n(x)): Solutions  to  Legendre's  differential  equation,

commonly appearing in problems with spherical symmetry.The Legendre formula

inits broadest form is

Figure. 12.2 Legendre Functions
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5. Hermite Functions (H_n(x)): Solutions to Hermite's differential equation, arising in 

quantum mechanics and the theory of Brownian motion.

Figure 12.3: Hermite Functions

6. Chebyshev  Polynomials  (T_n(x)  and  U_n(x)): Used  in  approximation  theory  and

numerical analysis, among other applications. 

Figure 12.4:Chebyshev Polynomials
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7. Elliptic Functions and Integrals: Functions arising from the inverse problem of elliptic

integrals, with applications in celestial mechanics and nonlinear differential equations. 

12.2 Importance in Mathematical Physics:
Special functions play a fundamental role in mathematical physics due to their ability to describe

a wide range of physical phenomena. They often emerge as solutions to differential equations 

governing physical systems, offering insights into the behavior of these systems. For example:

 Bessel functions describe phenomena involving cylindrical symmetry, such as the diffraction of

waves or the propagation of heat in a cylinder.

 Legendre  functions  are  essential  in  problems  with  spherical  symmetry,  such  as  the

gravitational potential around a spherically symmetric mass distribution.

 Hermite functions appear in the quantum mechanical description of harmonic oscillators,

including the vibrational modes of molecules and the quantized electromagnetic field

in a cavity.

The  versatility  of  special  functions  makes  them  indispensable  tools  in  theoretical  physics,

enabling physicists to model and understand complex physical phenomena with mathematical

precision.

12.3 Historical Development:
The  development  of  special  functions  traces  back  centuries,  with  contributions  from

mathematicians and physicists across different cultures and eras. Ancient civilizations such as

Babylonian and Greek mathematicians laid the groundwork for special functions through their

studies of geometric shapes and numerical methods.

During  the  European  Renaissance,  scholars  like  Isaac  Newton  and  Leonhard  Euler  made

significant advances in special functions, laying down the foundations for modern mathematical

analysis. Euler, in particular, made extensive contributions to the theory of special functions,

including  the  discovery  of  the  gamma  function  and  the  development  of  the  theory  of

hypergeometric functions.
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Throughout the 19th and 20th centuries, the study of special functions continued to evolve, with

notable contributions from mathematicians like Carl Friedrich Gauss, Bernhard Riemann, and

Henri Poincaré. The increasing importance of special functions in mathematical physics spurred

further  research  into  their  properties,  applications,  and  connections  to  other  areas  of

mathematics.

In  modern  times,  special  functions  remain  a  vibrant  field  of  study,  with  ongoing  research

addressing new challenges in  mathematical  physics,  computational  mathematics,  and applied

mathematics.

By exploring the overview, importance, and historical development of special  functions, this

chapter provides a comprehensive introduction to this  rich and diverse area of mathematical

inquiry.

12.4 Summary

 Describe special functions and the reasons that physics and mathematics depend on them

 Examine how special functions are used in a variety of contexts, such as probability 

theory, number theory, quantum mechanics, and signal processing.

 Assess integrals using specific functionalities 

12.5 Keywords
1. Mathematical Physics

2. Chebyshev Polynomials

3. Special Functions

4. Hermite Functions

12.6 Self Assessment
1. Can you name three common special functions and briefly explain their significance?

2. What is the gamma function, and what are its key properties?

3. How are Bessel functions used in solving problems involving wave propagation and 

oscillatory phenomena?
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4. Describe the role of Legendre polynomials in solving problems with spherical symmetry.

5. What distinguishes Hermite polynomials from other orthogonal polynomials, and in what

applications are they commonly used?

12.7  Case Study
As a physicist specializing in quantum mechanics, you're studying the behavior of particles 

confined to a one-dimensional potential well. Develop a case study that explores the following:

How can special functions, such as Hermite polynomials, be used to solve the Schrödinger 

equation for the harmonic oscillator potential?

12.8 References
1 Gelfand, I. M., Fomin, S. V. (2012). Calculus of Variations. United States: Dover 

Publications.

2 Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.
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UNIT - 13

Gauss Hypergeometric Function

Learning Objectives

 Discuss the convergence properties of the hypergeometric series .

 Examine specific instances of the hypergeometric function.

 Compute and comprehend the hypergeometric differential equation that the 

hypergeometric function satisfies.

 Structure

13.1 Gauss Hyper geometric Function

13.2 Definition and Properties

13.3 Series Solution of Gauss Hyper geometric Equation

13.4 Integral Representation and Transformation Formulas

13.5 Summary

13.6 Keywords

13.7 Self Assessment

13.8 Case Study

13.9 References
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13.1 Gauss Hyper geometric Function
The Gauss Hypergeometric Function, denoted by F(a,b;c;z), is a special function that arises in

various  areas of  mathematics,  including complex analysis,  number theory,  and mathematical

physics. It was first studied extensively by Carl Friedrich Gauss and later generalized by other

mathematicians.

13.2 Definition and Properties:
1. Definition: The Gauss Hyper geometric Function is defined as:𝐹(𝑎,𝑏;𝑐;𝑧)=∑𝑛=0,∞ (𝑎)𝑛(𝑏)𝑛(𝑐)𝑛𝑧𝑛/𝑛!  where (𝑥)𝑛 denotes the Pochhammer 

symbol, defined as (𝑥)𝑛=𝑥(𝑥+1)(𝑥+2)...(𝑥+𝑛−1).

2. Properties:

 Convergence: The series converges for ∣𝑧∣<1.

 Analytic Continuation: The function can be analytically continued to the whole

complex plane except for the points 𝑧=1 and 𝑧=0, where it has singularities.

 Symmetry: (𝑏,𝑎;𝑐;𝑧).

 Transformation:  Various  transformation  formulas  relate  with  other  special

functions  such  as  the  hypergeometric  series,  Bessel  functions,  and  Legendre

functions.

13.3 Series Solution of Gauss Hypergeometric Equation: 
The Gauss Hypergeometric Equation is a second-order linear differential equation of the form: 

13.4 Integral Representation and Transformation Formulas:

1. Integral Representation: 𝐹(𝑎,𝑏;𝑐;𝑧)=Γ(𝑐)Γ(𝑏)Γ(𝑐−𝑏)∫01𝑡𝑏−1(1−𝑡)𝑐−𝑏−1(1−𝑧𝑡)

−𝑎𝑑𝑡
where Γ(𝑧) denotes the gamma function.

2. Transformation Formulas:

 Gauss's Transformation: 𝐹(𝑎,𝑏;𝑐;𝑧)=(1−𝑧)𝑐−𝑎−𝑏𝐹(𝑐−𝑎,𝑐−𝑏;𝑐;𝑧)
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 Euler's Transformation: 𝐹(𝑎,𝑏;𝑐;𝑧)=(1−𝑧)−𝑎𝐹(𝑎,𝑐−𝑏;𝑐;𝑧𝑧−1)

These formulas allow for the transformation of the Gauss Hypergeometric Function under certain

conditions, providing relations between different instances of the function and facilitating its

manipulation in various mathematical contexts.

The Gauss Hypergeometric  Function plays a  crucial  role  in many areas of mathematics  and

physics,  providing  solutions  to  differential  equations,  evaluating  integrals,  and  representing

special functions. Its rich properties and applications make it a fundamental tool in mathematical

analysis.

13.5 Summary

 In  complex  analysis  and  mathematical  physics,  integral  representations  of  the  hyper

geometric function offer an alternate method of computing it.

 In many differential equations, integral equations, and boundary value issues that arise in

physics, engineering, and statistics, the Gauss hyper geometric function is present in the

solutions.

 Several features of the hyper geometric function are shown, including symmetry when

the parameters are switched and transformation formulas when the fractions are linearly

transformed.

13.6 Keywords
1. Gauss hyper geometric function

2. Euler's Transformation

3. Series Solution

13.7 Self Assessment
1. Can you provide an example of a special case of the hypergeometric function?

2. How are integral representations used to compute the hypergeometric function?

3. What are some properties of the hypergeometric function, such as symmetry properties or

transformation formulas?
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4. In  what  fields  of  mathematics  and  science  is  the  Gauss  hypergeometric  function

commonly used?

5. How can computational tools be utilized to compute the Gauss hypergeometric function

numerically?

13.8 Case Study
When working on signal processing applications as an engineer, you come across differential

equations that involve special functions. Create a case study that looks at the following subjects:

1. Examine  how  differential  equations  appearing  in  signal  processing,  like  the  Bessel

differential equation, can be solved using the Gauss hypergeometric function.

2. Compare and contrast the benefits and drawbacks of the hypergeometric function with

alternative techniques for solving differential equations.

13.9 References
1. Gelfand, I. M., Fomin, S. V. (2012). Calculus of Variations. United States: Dover 

Publications.

2. Elsgolc, L. E. (2014). Calculus of Variations. Netherlands: Elsevier Science.
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UNIT - 14

Kummer’s Confluent Hypergeometric Function and Other Special Functions

Learning Objectives:

 Familiarize with the notation and terminology used in hypergeometric functions.

 Explore important properties of hypergeometric functions, such as symmetry, 

transformation properties, and recursion relations.

 Derive and understand the series representation of hypergeometric functions

Structure:

14.1 Definition and properties of Kummer’s function

14.2 Relation to Gauss hypergeometric function

14.3 Introduction to Bessel functions, Legendre polynomials, and other special functions

14.4 Summary

14.5 Keywords

14.6 Self-Assessment Questions

14.7 Case Study

14.8 References
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14.1 Kummer's Confluent Hypergeometric Function
Kummer's  confluent  hypergeometric  function,  also  known  as  the  confluent  hypergeometric

function of the first kind, denoted by 1𝐹1(𝑎,𝑏;𝑧) is defined by the series:

1𝐹1(𝑎,𝑏;𝑧)=∑𝑛=0, ∞(𝑎)𝑛(𝑏)𝑛𝑧𝑛/𝑛!

where (𝑎)𝑛 is the Pochhammer symbol, denoting the rising factorial:

(𝑎)𝑛=(𝑎+1)(𝑎+2)⋯(𝑎+𝑛−1)

This  function  arises  in  various  areas  of  mathematics  and  physics,  including  differential

equations, probability theory, and combinatorics.

Properties of Kummer's Function

1. Analytic Properties: Kummer's function is analytic for all complex values of 𝑎, 𝑏, 

and 𝑧.

2. Singular Points: It has a regular singular point at 𝑧=0 and an irregular singular point

at 𝑧=∞.

3. Integral Representation: Kummer's function can also be represented as an integral:

1𝐹1(𝑎,𝑏;𝑧)=Γ(𝑏)Γ(𝑎)Γ(𝑏−𝑎)∫0,1𝑒𝑧𝑡𝑡(𝑎−1) (1−𝑡)(𝑏−𝑎−1)𝑑𝑡
4. Asymptotic Behavior: The behavior of 1𝐹1(𝑎,𝑏;𝑧) as 𝑧 approaches infinity 

depends on the values of 𝑎 and 𝑏. It exhibits exponential growth or decay depending

on the relative magnitudes of 𝑎 and 𝑏.

14.2 Relation to Gauss Hypergeometric Function

Kummer's function is closely related to the Gauss hypergeometric function 2𝐹1(𝑎,𝑏;𝑐;𝑧). In

fact, 1𝐹1(𝑎,𝑏;𝑧) can be expressed in terms of 2𝐹1 as follows:

1𝐹1(𝑎,𝑏;𝑧)=𝑒𝑧⋅2𝐹1(𝑎,𝑎−𝑏+1;𝑎+1;𝑧)

14.3 Introduction to Other Special Functions
Bessel Functions
Bessel  function  is  solution  of  Bessel's  differential  equation  and  appear  in  various  problems

concerning propagation of wave, conduction of heat, and quantum mechanics.
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Legendre Polynomials
Legendre  polynomials,  named  after  Adrien-Marie  Legendre,  are  a  family  of  orthogonal

polynomials. They arise in the solution of Laplace's equation.

Other Special Functions
There  are  numerous  other  special  functions,  including  Hermite-polynomials,  Laguerre-

polynomials,  Chebyshev-polynomials,  and  Jacobi-polynomials,  each  with  its  own  unique

properties and applications in mathematical physics and engineering.

14.4 Summary
These special functions play crucial roles to solve the differential-equation, stating the solution in

form of series expansions, and providing insights into the behavior of physical systems. They 

form the foundation of many branches of applied mathematics and theoretical physics.

14.5 Keywords
1. Hypergeometric Function

2. Generalized Hypergeometric Function

3. Gauss's Hypergeometric Function

4. Confluent Hypergeometric Function

5. Hypergeometric Differential Equation

14.6 Self-Assessment Questions
1. How is the hypergeometric series defined?

2. Name one special case of the generalized hypergeometric function.

3. How  is  the  confluent  hypergeometric  function  different  from  the  standard

hypergeometric function?

4. Give an example of an application of hypergeometric functions in physics.

5. What is an integral representation of the hypergeometric function? 

6. How  does  the  hypergeometric  function  relate  to  other  special  functions,  such  as

Bessel or Legendre functions?
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7. How are hypergeometric functions used in probability and statistics?

8. What  is  the  relationship  between  the  hypergeometric  function  and  the  binomial

theorem?

9. What is the significance of Riemann's P-equation in the context of hypergeometric

functions?

10. What is Kummer's function, and how is it related to hypergeometric functions?

14.7 Case Study
Kummer’s confluent hypergeometric function, often denoted as \( M(a, b, z) \) or \( {}_1F_1(a;

b;  z)  \),  is  a  special  function that  appears  in  various  problems in physics,  engineering,  and

applied  mathematics.  It  is  particularly  useful  in  solving  differential  equations  with  irregular

singular points. In quantum mechanics, this function arises in the solution of the Schrödinger

equation for the hydrogen atom and in other potential problems.

Objective:  To  illustrate  the  application  of  Kummer’s  confluent  hypergeometric  function  in

solving the Schrödinger equation for the hydrogen atom and to compare it with other special

functions that arise in this context.
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